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Abstract

Quantitative analysis of natural gas depends on the calibration of a gas chromatograph with certified gas mixtures and the determination of
a response relationship for each species by regression analysis. The uncertainty in this calibration is dominated by variations in the amount of
the sample used for each analysis that are strongly correlated for all species measured in the same run. The “harmonisation” method described
here minimises the influence of these correlations on the calculated calibration curves and leads to a reduction in the root-mean-square residual
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eviations from the fitted curve of a factor between 2 and 5. Consequently, it removes the requirement for each run in the calibration
o be carried out under the same external conditions, and opens the possibility that new data, measured under different envir
nstrumental conditions, can be appended to an existing calibration database.
rown Copyright © 2004 Published by Elsevier B.V. All rights reserved.
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. Introduction

Gas chromatography is widely used to measure the com-
osition of natural gas[1]. A feature of this method is that sev-
ral components in the same sample are analysed simultane-
usly with different chromatographic columns and detectors.
he composition of the complete mixture is then established
y combining the results for each component.

The relationship between the response of the gas chro-
atograph (GC) and the amount fractions certified for a set
f standards is related by a calibration curve[2]. This curve

s calculated by regression of the measured areas of the peaks
etected by the GC against the certified values of the stan-
ards. In the case of an analysis of a sample with many com-
onents, such as natural gas, a calibration curve is derived

ndependently for each component. This derivation is usu-
lly carried out by regression using an ordinary least squares
ethod. Alternatively, a generalised least squares method

hat takes correct account of the uncertainties associated with

∗ Corresponding author. Tel.: +44 20 8943 6826.

the standards as well as with the analytical data[3] can be
used.

One of the largest sources of uncertainty in this typ
analysis results from variations in the amount of gas inje
into the GC. These variations are referred to as “sample
variations and are strongly correlated with ambient co
tions, particularly ambient pressure, the temperature o
sampling loop, and sample flow. Additionally, some chan
in instrumental conditions, such as those leading to chang
the detector gain, can cause variations in the apparent s
size. We refer to all of these as sample size variations
cause they are common to all components measured d
the same analytical run. Consequently, correlated resp
are observed for the different gas components that are
sured in the same run. It is good practice to design GC h
ware to bring such variations within reasonable toleran
for example by measuring the ambient pressure and
it to correct the response of the GC for resulting variat
in sample size. Unfortunately, this is only a partial solu
since, for example, it takes no account of sample size
ations caused by changes in the sample temperature
sensitivity of the detectors.
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In this work, we consider a model-based least squares
method that compensates for these correlated variations. It
reduces the uncertainty associated with the calibration curve
by eliminating non-random components. We apply the new
“harmonisation” method to a set of calibration data derived
from 25 certified mixtures of synthetic natural gas.

The method of harmonisation described here is different
from the normalisation method discussed elsewhere[4,5].
That method involves the normalisation of the results to a
“complete mixture” (such that the sum of the amount frac-
tions is unity). It is applied to the results of an analysis and
corrects them for differences in conditions between the analy-
sis and calibration steps. It works by attributing any difference
between the sum of the measured amount fractions and unity
to changes in the sample size between the calibrations and the
analysis. However, it cannot allow for variations during the
calibration process itself. The harmonisation method consid-
ered here is applied to the calibration curve and corrects for
changes in environmental and instrumental conditions during
the calibration process. Additionally, it does not require all
components to have been measured, which is a requirement
for the normalisation process.

In the following section, we introduce a mathematical
analysis of the causes of variations in the sample size in gas
chromatography. This analysis justifies the use of an ordinary
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ture were known from gravimetric data derived during their
preparation[6] and may have uncertainties of 0.002% (rela-
tive to value) for the most abundant components and 0.01%
for the least abundant. Five components were measured us-
ing a thermal-conductivity detector (TCD) with a column of
length 4.4 m and internal diameter 0.75 mm packed with Hay-
sep A (120–140 mesh) operated at 160◦C. Seven components
were measured with a flame-ionisation detector (FID) and a
column operated at the same temperature with the same di-
mensions packed with Porapak PS (100–120 mesh). Propane
was measured with both detectors.

3. Analysis of data

3.1. Model for sample size variations

Suppose we carry out a calibration withN standard gas
mixtures, each of which includes a total ofQ components.
During the analysis of standard mixturej, the amount (nij )
of componenti introduced into the GC from the sample loop
can be calculated by use of the ideal gas law:

nij = pjV

TjR
xij, (1)
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hen introduce the principle of harmonisation of the data u
ultiplicative correction factors. The performance of the
onisation method is demonstrated in an un-weighted f
e then show how a weighted approach can be benefic

ome applications.

. Experimental

The harmonisation method developed here was ap
o the analysis of a set of synthetic natural gas mixt
ach containing the eleven components listed inTable 1.
he amount fractions of all the components in each

able 1
ange of amount fractions contained in the reference gases studied
ork

omponent Amount fraction (mmol/mol)

Minimum Maximum

itrogen 8.08 254
arbon dioxide 3.41 136
ethane 5.62 971
thane 7.26 151
ropane 2.32 75.9

sobutane 0.36 12.7
-Butane 0.35 12.7
eopentane 0.042 3.56

sopentane 0.084 4.55
-Pentane 0.085 4.61
-Hexane 0.037 4.38
herepj is the pressure of the gas in the sample loop anTj

s its temperature at the time of the analysis,V is the volume
f the sample loop andR is the ideal gas constant. (It
ossible to introduce the compressibility of the mixture

he denominator of the right-hand side of(1) to allow for non-
deal gases. Since there is no significant difference bet
he compressibilities of the gases considered here, it has
mitted.) The amount fraction of componenti in standardj

s denotedxij and is defined by

ij = nij

nj

, (2)

here the total amount of all components is

j =
Q∑

i=1

nij. (3)

Throughout this paper we present more general rela
hips that are valid for any value ofq less than or equal toQ.
he integrated area (yij ) recorded by the detector in respo

o componenti in standardj is

ij = rinij (4)

here ri is the relative response factor for the detecto
omponenti. Expression(4) assumes that the detector
proportional response. In some cases there may be

on-linearity in the response of the detector, in which
quadratic term can be introduced. Substituting expre

4) into expression(1) leads to the measurement equation
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this process:

yij = ri
pjV

TjR
xij. (5)

3.2. Formulation of calibration curves using an ordinary
least squares model

In line with the conventional approach to developing a cal-
ibration curve for each componenti, we would fit the model
equation

yij = αi + βixij + ηij (6)

to the measured data by linear regression, whereηij repre-
sents an effect presumed to be random andαj allows for any
offset in the detector output during analysisj. The use of this
approach assumes that all uncertainties are associated with
theyij and therefore those associated with thexij are negligi-
ble. Since the objective of this work is to develop a calibration
curve that can be used to determine the value of an unknown,
we fit an “inverse calibration” model of the form:

xij = ai + biyij + eij (7)

by minimising the sum of the squares of the residual devi-
ations

∑
i,j(xij − x̂ij)

2, wherex is the measured value and
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Fig. 2. Residual deviations from the fitted calibration line for methane.

respect to propane, which is measured on both detectors. We
use the correlation coefficient[7] of componenti defined by

ρi =
N∑

j=1

xij − x̂ij

S.D.(xij − x̂ij)

xpj − x̂pj

S.D.(xpj − x̂pj)
, (8)

wherexij is defined as above andxpj is the measured area
for propane. The circumflexed quantities are the fitted values
using the OLS procedure and S.D.(x) indicates the standard
deviation ofx. The results are shown inTable 2.

The residual deviations from the fitted lines are positively
correlated with respect to propane for all of the different com-
ponents in each standard. The correlation is retained for mea-
surements made with the TCD and the FID. These correla-
tions are due to changes in environmental and instrumental
conditions (e.g. ambient pressure or temperature of the sam-
pling loop) between the measurement of each standard which
affect the amount of substance injected (nij ).
ˆ the corresponding modelled value. The use of this inv
alibration model is valid when any quadratic compone
he response of the detector is small.

.3. Covariance between the calibration curves

An example of a calibration curve developed for meth
sing inverse calibration is shown inFig. 1. The deviation

rom the fitted line are not readily visible on the scale
he graph; consequently, we analyse the residual devia
efined by (x − x̂). These residual deviations from the fit

ines for methane and propane are shown inFigs. 2 and 3.
The extent of correlation in the data can be quantifie

valuating the covariance of the residual deviations from
tted line. It is convenient to evaluate the covariance

ig. 1. Calibration data and calibration line for measurements of me
measured with the TCD). This line was calculated using an ordinary
quares fit to the measurements of methane (area counts) in all 25 sta
 . Fig. 3. AsFig. 2except for propane (measured with the FID).
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Table 2
Correlation coefficients for the residual deviations from the fitted curve for
each species according to Eq.(8) for the un-weighted fit

Detector Species Correlation coefficient

Raw data After harmonisation

TCD Nitrogen 0.37 −0.05
Methane 0.63 −0.03
Carbon dioxide 0.49 0.15
Ethane 0.83 0.36

FID Isobutane 0.35 −0.39
n-Butane 0.52 −0.62
Neopentane 0.25 −0.75
Isopentane 0.26 −0.68
n-Pentane 0.38 −0.58
n-Hexane 0.11 −0.44

The values for the TCD and the FID data sets are both calculated with respect
to propane measured on that detector; hence no value is given for propane.

4. Harmonisation

4.1. Multiplicative model

The principal objective of the harmonisation method de-
scribed here is to remove the non-random effect from the
measured data and hence to improve the fit of the calibration
curves to the data. The method compensates for the system-
atic contribution to the residual deviations from the fitted lines
and leads to a corrected set of measurement responses with
the covariation reduced.

The harmonisation method is based on the use of a set of
multiplicative correction factorscj that compensate for vari-
ations in ambient and instrumental conditions by correcting
the ratiopj /Tj experienced during the analysis of standardj
to “standard” conditionsp0/T0 defined by

cj

pj

Tj

= p0

T0
. (9)

Substitution of expression(9) into Eq.(5) leads to a mod-
ified measurement equation:

yij = ri

cj

p0V

T0R
xij. (10)

T
A

D

n

T

F

Although thecj are shown in expression(9) as factors that
are multiplied by the ratio of the pressure to the temperature,
they also implicitly account for any other multiplicative ef-
fect including, for example, detector sensitivity changes. The
harmonisation method provides a mathematical basis for cal-
culating the optimum set ofcj .

The modified measurement equation can be re-arranged
into the form

xij = 1

ri

T0R

p0V
cjyij. (11)

This form of the modified measurement equation mixes
the errors in thecj with those inyij andri . Our studies show
that this does not cause any significant difficulty in the ex-
amples considered here[8]. A modified regression model
equation can now be fitted to the measured data

x̂ij = âi + b̂icjŷij + d̂i(cjŷij)
2 + eij, (12)

whereεij is a normally-distributed random variable with zero
mean. This modified model equation differs from the model
(7)by the introduction of the correction factorscj on the right-
hand side and a quadratic term to model a quadratic deviation
from linearity in the response of the detector.

For reasons given elsewhere[8], obtaining a physically
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etector Species Correlation coefficient

Raw data After harmonisatio

CD Nitrogen 0.55 −0.60
Methane 0.73 −0.18
Carbon dioxide 0.57 0.00
Ethane 0.85 0.20

ID Isobutane 0.34 −0.76
n-Butane 0.65 −0.72
Neopentane 0.17 −0.05
Isopentane 0.26 0.04
n-Pentane 0.37 0.05
n-Hexane −0.01 −0.15
easible least squares solution to this model requires th
roduction of a constraint. In the examples presented
he constraint used is

N

j=1

cj = N. (13)

The incorporation of this constraint is equivalent to
osing the requirement that the standard conditions (p0/T0)

o which all measurements are corrected are the mean
he measurement conditions:

p0

T0
= 1

N

N∑
j=1

pj

Tj

. (14)

.2. Un-weighted method

The performance of the new method has been tested b
eloping calibration curves for the data from the 25 stand
ndicated above. The responses from the two detectors
reated independently by splitting the data into FID (Q= 7)
nd TCD (Q= 5) sets. (Although both detectors measu
ropane, the response to propane was not used to relat
esults by “bridging”.)

Fig. 2 shows the residual deviations (xi − x̂i) from the
tted lines for methane measured with the TCD before
fter the use of the harmonisation method. Similarly,Fig. 3
hows the residual deviations for propane, measured wi
ID. In both cases, it is clear that the residual deviations

he fitted line are substantially reduced by the new meth
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Fig. 4. Efficiency of the harmonisation process measured by the ratio of
the residual sum of squares before and after harmonisation (Eq.(15)). The
shaded bars indicate the un-weighted fit and the open bars indicate the
weighted fit. The efficiency for methane using the un-weighted fit is 136.

A measure of the mean improvement in the residual stan-
dard deviation from the fitted model is given by

I =
√

RSSexper

RSScorr
, (15)

where (RSSexper) is the residual sum of squares of the ex-
perimental data and (RSScorr) is the residual sum of squares
after carrying out the harmonisation. The quantityI is also
equal to the ratio of the standard deviations of the residual
deviations with and without harmonisation. Consequently, it
can be considered to be a measure of the reduction in the
uncertainty of the measurements[9]. Expression(15)can be
applied to the residual sum of squares for each component
and also to the total for all components.Fig. 4 shows the
calculated values for each component as well as for all com-
ponents. We see that the method is most efficient in improving
the fit of the TCD data to the model for methane (I = 136) and
the FID data for propane (I = 9.5). The reason for these par-
ticular improvements is that the amount fractions, and hence
the residual deviations for methane and propane are much
larger (seeTable 1). This is a consequence of solving the set
of models for each componenti by minimising the sum of
theε2

ij for that i.

F or
c on the
l ID.

Fig. 5shows the values of the set of correction coefficients
(cj) for the TCD and FID data. The only explicit requirement
on thecj is that their mean is unity (following the constraint
(13)). The corrections for the TCD are in the range±1.1% (of
value). The spread of thecj is larger for the FID (±1.5% of
value) because it is generally more subject to environmental
and instrumental influences.

The data inTable 2show how the correlation coefficients
for the results for each component (formula(8)) have been
changed by the application of the harmonisation method. As
described in Section3.3, the correlation coefficients for all
components in the raw data are positive, which confirms
the presence of sources of correlated variation across the
data. When the TCD data has been processed, the posi-
tive correlations are decreased or removed. In contrast, the
correlations in the FID data are increased and change sign
(from correlation to anti-correlation). This indicates the ten-
dency of this method, in its un-weighted implementation (as
shown in the previous section), to “over-fit” the data be-
cause of the presence of a single component at a much higher
concentration.

4.3. Weighted method

An alternative approach that has the potential to bal-
a po-
n (Eq.
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ig. 5. Values for the correction coefficients (ci ) for the 25 standards. F
larity, the values have been plotted in ascending order. The series
eft were measured with the TCD and the series on the right with the F
nce the improvement more evenly amongst the com
ents is to solve the modified measurement model
12)) by minimising the sum of the weighted deviatio
iven by

∑
i,j(1 − x̂ij/xij)2. An example of the results

uch a weighted fit for methane and propane is show
igs. 6 and 7, which can be compared withFigs. 2 and 3.
he residuals for the data after application of the
ethod are larger for both methane and propane be

he use of the weighting has reduced the tendenc
he method to “over-fit” the data to the most abund
omponent.

The efficiencies for each component for the weighted
n-weighted methods are shown inFig. 4. The improvemen

or methane is reduced from 136 to 5.6 and propane from

ig. 6. Residual deviations from the fitted calibration line for methan
he weighted fit.
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Fig. 7. AsFig. 6except for propane (measured with the FID).

to 2.6. The reduction in improvement for methane leads to a
reduction in the overall improvement for the TCD data. The
total efficiency is almost unchanged for the FID data. The
change in the FID data is less significant because the ratio of
the concentration of propane to the other components is not
as large as the corresponding ratio for methane in the TCD
data and because there are more random sources of variation
present.

The correlation coefficients for the weighted fits are shown
in Table 3. It can be seen that the weighted method does not
have the same tendency to “over-fit” the most abundant com-
ponents and is generally more effective in reducing the corre-
lation in the other components. The increase in the correlation
coefficient for nitrogen reflects the fact that the correlation co-
efficient measures the fraction of the residual variation that is
correlated. In this case, the residual variation is reduced, but
the fraction of it that is correlated is increased. The use of the
weighted method changes the set of correction coefficients
(ci) for both detectors by less than 0.05% from those for the
un-weighted approach. This is because the extent of the en-
vironmental effects are not influenced by the type of fitting
method used, which largely influences the values of the fitted
coefficients.

4.4. Inverse calibration
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leading to large changes in the intercept, but with limited
influence on the results of the inverse calibration.

5. Conclusions

A new method for the reduction in correlated variations in
coupled calibration curves has been described. It leads to a
substantial reduction in the residual deviations from the cal-
ibration line by removing correlated effects from the data.
The method can be extended to apply to polynomial curves,
weighted least-squares and generalised least-squares meth-
ods. The harmonisation method presented here is applicable
to any set of data with two or more channels of information
that contain mutual dependencies.

We have presented an example of the application of the
method to the development of calibration curves for the
eleven components in a set of synthetic natural gas mixtures.
It has more effect in reducing the uncertainty associated with
the higher concentration components measured on the TCD
than the lower concentration components measured on the
FID because they are less subject to random variations. It
has the advantages over normalisation methods[4] that it is
applied to the calibration curve itself and it does not require
all compounds present to be quantified. Hence, it can be used
w ta
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The objective of establishing a calibration curve is ge
lly to make use of it for the analysis of an unknown. T

s often called the “inverse calibration” step. Since the
ethod reduces the uncertainty in the set of calibration cu
y achieving a better fit to all the data simultaneously, it ca
xpected to reduce the uncertainty in the inverse calibr
tep.

The constant coefficients ˆai of the fitted calibration curve
or the raw data change by less than 0.1% when the harm
ation method (either with or without weighting) is used.
hange for methane is approximately 1%, which is a co
uence of the limited dynamic range of the methane
hich are within less than a factor of two in amount fract
ence, the fitted curve “pivots” around the cluster of d
ith or without a “bridging” compound to link sets of da
cquired with different columns.

In this application, the new method has the advantage
t does not require all the measurements to be acquired ra
n order to maintain constant environmental and instrum
onditions. It can also be used in such a way that the c
an be updated when new data become available, even
nvironmental or instrumental conditions have change
articular example of the application of the new metho
hen it is necessary to verify the values of a synthetic stan
as mixture by analysis. In general, it is good practice fo
alibration curve to be developed at the same time a
nalysis. The use of the harmonisation method enables
n analysis to be carried out with reduced uncertainty
ithout the constraint that the analysis and the calibratio
arried out under the same instrumental and environm
onditions.
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